Var.new_param()#
- classmethod Var.new_param(value, distribution=None, name='', inference=None)[source]#
Initializes a strong variable that acts as a model parameter.
A parameter is a strong variable that can have a distribution. If it does have a distribution, its
log_prob
is counted in a model’s log prior, i.e.log_prior
.- Parameters:
value (
Any
) – The value of the variable.distribution (
Dist
|None
) – The probability distribution of the variable. (default:None
)name (
str
) – The name of the variable. If you do not specify a name, a unique name will be automatically generated upon initialization of aModel
. (default:''
)inference (
TypeAliasType
) – Additional information that can be used to set up inference algorithms. (default:None
)
- Return type:
See also
Var.new_obs
Initializes a strong variable that holds observed data.
Var.new_calc
Initializes a weak variable that is a function of other variables.
Var.new_value
Initializes a strong variable without a distribution.
Examples
A simple parameter without a distribution and without a name:
>>> x = lsl.Var.new_param(1.0) >>> x Var(name="")
A simple parameter with a normal prior:
>>> prior = lsl.Dist(tfd.Normal, loc=0.0, scale=1.0) >>> x = lsl.Var.new_param(1.0, distribution=prior) >>> x Var(name="")